

地球系统数值模拟装置项目 (地球系统模式数值模拟系统)海洋环流模式分系统 培训

培训人:于子棚

2022年6月1日

03 数

1.分系统介绍

海洋环流模式分系统是海洋-海冰耦合的分 系统,包括单独的海洋环流模式和海冰模 式,二者通过耦合器进行通量交换,可以 在给定的边界条件和初始条件下,模拟海 水温度、盐度、流速、海表高度、海冰流 速、海冰厚度和密集度等基本的特征,同 时其模拟结果可以为海洋生物地球化学模 式提供海洋环流背景场,并可以为大气模 式提供下边界条件,为区域海洋模式提供 侧边界条件。

Earth Lab

1.分系统介绍

配置		LICOM2	LICOM3	
按口和计编	耦合接口	第6代耦合器 (CPL6)	第7代耦合器 (CPL7)	
按山和开1」	并行	1维 MPI+OMP	2维MPI + OMP	
	坐标系,网格/水平, 垂直	经纬正交, 经纬度坐标/1°,30层; 0.1°,55层	任意水平正交曲线坐标,三极格点/1°, 30/80层; 0.1°,55层	
动力框架	示踪物平流	中央差	中央差/保型平流	
	动量时间积分	显式	隐式	
	垂直混合	2阶闭合, 主针对混合层 (Canuto et al. 2001, 2002)	2阶闭合(Canuto et al. 2001, 2002) 内潮混合 (St. Laurent et al., 2002)	
物理过程	涡旋混合	等密度面混合 (Redi 1982) 涡致平流 (Gent & McWilliams 1990)	等密度面混合 (Redi 1982) 涡致平流(Gent & McWilliams 1990) N ² 厚度扩散(Ferreira et al., 2005)	
*//+1	地形	DBDB5	ETOPO2	
安北古	初值	WOA01	PHC3.0	
		·	Earth Lab	

模式发展是一项工程,既有海洋基本理论和原理,又有数值方法和计算机技术问题。

- 1. 选择坐标系, 推导方程组和边界条件。
- 2. 确定参数化方案。
- 3. 确定分辨率,水平网格和垂直分层,实现区域和变量的离散化。
- 4. 构造时间-空间差分格式,将微分方程组化为代数方程组。
- 5. 完成程序设计,实现计算机模型。

基于大尺度地球流体动力学的特点,原始方程组由黏性流体力学基本方程组(即Navier-Stokes方程)简化和修改得到。

静力平衡近似	Boussinesq近似	湍流黏性假定
尺度分析:海洋环流水平运动尺 度远大于海洋平均深度; 垂直动量方程简化为静力平衡方 程,	压力对密度的贡献:海洋每下潜 1000米(相当于增加100个大气压), 海水密度约增加5‰。 →不可压缩!	➤ 湍流黏性(扩散)远大于分 子黏性(扩散),引入湍流 黏性(扩散),略去分子黏 性(扩散)。
$\frac{\partial p}{\partial z} = -\rho g$	 > 忽略连续方程中密度的个别变化; > 动量方程压力梯度项中的密度取为常数; > 保留状态方程和静力方程中密度的变化(浮力和水平压力梯度的来源)。 →即可压,又不可压。 	▶ 方程闭合和参数化问题。 $ \frac{\partial u}{\partial t} = -\frac{\partial uu}{\partial x} - \frac{\partial vu}{\partial y} - \frac{\partial wu}{\partial z} $ $ \frac{\partial \langle u'u' \rangle}{\partial x} - \frac{\partial \langle v'u' \rangle}{\partial y} - \frac{\partial \langle w'u' \rangle}{\partial z} \dots $

动力子系统主要负责求解海洋和海冰模式<mark>方程组的数值解</mark>,方程包扩:考虑Boussinesq近似的动量方程,位温和盐度两种示踪物的守恒方程,表示密度、盐度、温度和压力之间非线性关系的状态方程、海表高度方程,以及海冰的热力学和动力学方程。

Earth Lab

正压模块

对连续方程从海底到海表作垂直积分,并交换微分和积分次序:

$$\int_{-H}^{z_0} \left(\nabla \cdot \mathbf{v} + \frac{\partial w}{\partial z} \right) dz = 0$$

$$w\Big|_{z=-H} = -\big(\mathbf{v}\cdot\nabla H\big)_{z=-H}$$

$$\frac{\partial z_0}{\partial t} = -\left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y}\right)$$

$$(U,V) \equiv \int_{-H}^{z_0} (u,v) dz$$
 正压输送

海表高度的倾向就取决于垂直积分流的散度。

106	-	do iblock = 1, nblocks_clinic
107		<pre>this_block = GET_BLOCK(blocks_clinic(iblock),iblock)</pre>
108		<pre>call DIV(1,div_out,wka(:,:,1,iblock),wka(:,:,2,iblock),this_block)</pre>
109	-	do j = 3, jmt-2
110	-	do i = 3,imt-2
111		<pre>work(i,j,iblock) = vit(i,j,1,iblock)*(-1)*div_out(i,j)*p25</pre>
112		end do
113		enddo
114		end do
115		
116		call POP HALOUPDATE(work.POP haloClinic.POP gridHorzLocCenter.&
117		POP fieldKindScalar.errorCode.fillValue = 0.0 r8)
118		
119		LISOMP PARALLEL DO PRIVATE(TBLOCK T)
120	_	do iblock = 1 phlocks clinic
121	_	do i = 1 imt
121		do j = 1, jint
122	_	$h^{(i)}$ i iblock) - henci i iblock) + work(i i iblock)*dth
123		and de
124		
125		end do
120		end do
127		
128		
129		· COMPUTE THE "ARTIFICIAL" HORIZONTAL VISCOSITY
130		
131		#IT(defined SMAG1)
132		
133		#else
134		#it(defined BIHAR)
135		<pre>!!\$OMP PARALLEL DO PRIVATE(IBLOCK, this_block, hduk,hdvk)</pre>
136	-	do iblock = 1, nblocks_clinic
137		this_block = GET_BLOCK(blocks_clinic(iblock),iblock)
138		call HDIFFU_DEL4(1, hduk, hdvk, ubp(:,:,:hlock), &
139	_	vbp(:,:,1block), this_block)
78		! compute divergence using a 4 point stencil
79		!
80		<pre>bid = this_block%local_id</pre>
81		
82		div out = c0
82	_	do i = 2 py block
0.0		$do j = 2, iiy_{ij} block 1$
84		$uo 1 = 1, nx_{DIOCK-1}$
85		1f (k <= kmt(1,j,b1d)) then
86		div_out(i,j) = &
87		p5*((ux(i+1,j) + ux(i+1,j-1))*htw(i+1,j,bid) - &
88		(ux(i,j) + ux(i,j-1))*htw(i,j,bid) + &
89		(uv(i+1, j) + uv(i, j))*hts(i, j, bid) - &
90		(1)((i+1)-1) + 1)((i-1)+1)((
01		(uy(1,1,j-1), uy(1, j-1)) ((3(1, j-1,010)), a
91		carea_r(1, j, biu)
92		enalt
93		end do
		chu do
94		end do
94 95		end do end subroutine DIV

正斜压耦合模块

其中

正斜压耦合模块

模态分解方法(Blumberg and Mellor, 1987)

假定当前时刻所有的模式变量值均已得到,考虑如何由当前时刻的变量值计 算出下一时刻的变量值。由于我们的主要目的是将表面波分离出来,故以下只讨 论动量方程从当前时刻到下一时刻的积分(其间也要涉及连续方程)。为叙述简 单起见,以下提到的"方程"均指和微分方程相应的差分方程。

第一步,从当前时刻出发,用时间步长 Δt_c 将完全的动量方程(4.1)和(4.2) 积分一步,得到下一时刻u,v的预估值 u^* , v^* 。

第二步,由于动量方程(4.1)和(4.2)中既包含斜压分量也包含正压分量, 而积分的时间步长Δtc远大于正压过程所能允许的时间步长ΔtB,所以预估值u*, v*的误差应当主要来源于其中的正压部分。为避免正压部分误差的积累,将u*, v*中的正压分量扣除,只保留斜压分量u',v':

第三步,为了得到正压分量的比较精确的估计,回到当前时刻,用表面波过 程所允许的时间步长 Δt_B 将(4.20)、(4.25)和(4.26)构成的正压模态方程组积 分N步(总的时间跨度为 Δt_C),得到下一时刻的海表高度 z_0 以及正压输送量U,V, 由U,V可以计算正压速度分量,用于和第二步得到的斜压速度组成下一时刻的 速度:

$$u = u' + \frac{U}{H + z_0}$$

$$v = v' + \frac{V}{H + z_0}$$
(4.54)

和 u*, v* 相比, u, v 中的正压分量的误差得到了控制,因此这种算法有利于在 长时期积分过程中保持计算稳定性。

276		!
277		! INTERACTION BETWEEN BAROTROPIC AND BAROCLINIC MODES
278		!
279		call VINTEG(U,WORK)
280		
281		<pre>!!\$OMP PARALLEL DO PRIVATE(IBLOCK,K,J,I)</pre>
282	-	<pre>do iblock = 1, nblocks_clinic</pre>
283	-	do $k = 1, km$
284	_	do j = 1, jmt
285	_	do i = 1,imt
286		u(i,j,k,iblock) = (u(i,j,k,iblock) - work(i,j,iblock) + &
287		ub(i,j,iblock))*viv(i,j,k,iblock)
288		end do
289		end do
290		end do
291		end do
292		
293		call VINTEG(V,WORK)
294		
295		<pre>!!\$OMP PARALLEL DO PRIVATE(IBLOCK.K.J.I)</pre>
296	_	do iblock = 1, nblocks clinic
297	_	do k = 1.km
298	_	do $i = 1$. imt
299	_	do i = 1.imt
300		v(i, i, k, i) lock) = ($v(i, i, k, i)$ lock) - work(i, i, i) lock) + &
801		$\psi(i, j, h) = \psi(i, h)$
302		end do
303		end do
304		end do
305		end do
07		L now invert
00	_	
90	_	$d = k_2, l, -l$
99		g0 = 1.0/(b8(K) - C8(K)*e8(K))
200		e8(k-1) = a8(k)*g0
201		f8(k-1) = (d8(k) + c8(k))*f8(k))*g0
202		end do
03		
04		L b c at surface
04		: U.C. at Surface
205		WK(1,],1,1DIOCK) = (e8(0)*TOPDC(1,],1DIOCK) + &
206		f8(0))*viv(i,j,1,iblock)
207	-	do k = $2, kz$
208		wk(i,j,k,iblock) = (e8(k-1)*wk(i,j,k-1.iblock) + &
000		$f_{8(k-1)}$ t_{1} t_{1} t_{1} t_{1} t_{2} t_{1} t_{1} t_{2} t_{1} t_{1} t_{2} t_{1} t_{1} t_{2} t_{1}
10		
210		
211		end 1T ! 1T(kmu(1,],1block) > 0) then
212		end do ! do i = 3, imt-2
213		end do ! do j = 3, jmt-2
214		end do ! do iblock = 1, nblocks clinic
215		
16		rature
210		return
217		end subroutine INVTRIU

温度平流模块

通常情况下,一个单纯经历平流的标量场,在平流的过程中,其值的变化范 围会在初值的取值范围内。根据这个规则,在结合 Lax-Wendroff 二阶精度差分 方案和迎风差方案的基础上,提出了两步正定保形平流方案。

具体计算:

在不考虑扩散的情况下,示踪物方程的通量形式可以写成如下形式:

$$\frac{\partial F}{\partial t} + \nabla \cdot (\vec{V}F) = 0$$

其中,F=F(x,y,z,t)为无扩散的示踪物,V=V(u,v,w)为三维速度场。 为了简单起见,考虑其在一维的情况,介绍两步正定保形平流方案的具体计 算方法,多维的情况可以简单推广。对于一维的情况,将上式可以写成:

$$\frac{\partial F}{\partial t} + \frac{\partial uF}{\partial x} = 0$$

1: 运用 Lax-Wendroff 格式进行预积分。设第 n 时刻的值为 F?, 利用 Lax-Wendroff 格式预积分一步后得到的值为 F_i^* 。即:

$$\begin{split} F_{i}^{*} &= F_{i}^{n} - \frac{\Delta t}{2\Delta x} \left[u_{i+\frac{1}{2}}^{n} (F_{i+1}^{n} + F_{i}^{n}) - u_{i+\frac{1}{2}}^{n} (F_{i}^{n} + F_{i-1}^{n}) \right] \\ &+ \frac{\Delta t}{2\Delta x} \left[|u^{2}|_{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} (F_{i+1}^{n} - F_{i}^{n}) - |u^{2}|_{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} (F_{i}^{n} - F_{i-1}^{n}) \right] \end{split}$$

然后, 对预积分得到的 Fi*用保形传输规则进行判断, 判断是否满足:

其中:

$$F_{t_{\min}}^{n} = \max(F_{t-1}^{n}, F_{t}^{n}, F_{t+1}^{n})$$

$$F_{t_{\min}}^{n} = \min(F_{t-1}^{n}, F_{t}^{n}, F_{t+1}^{n})$$

如果满足该判定条件,则表示满足保形传输规则,否则表示破坏了保形传输

规则。

$ \begin{array}{c} (A) \ \mathrm{d} = 1 \\ A) \ \mathrm{d} = 1 \\ A) \ \mathrm{d} = 1 \\ \mathrm{d} = 1 $		227	
A) 如果不满足保形传输规则,则对该点采用迎风差格式,即: $F_{t}^{n+1} = F_{t}^{n} - \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+}^{n} + F_{t}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} + F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t}^{n}) - u _{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t}^{n}) - u _{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t}^{n}) - u _{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} + F_{t}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} + F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} + F_{t}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} + F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} + F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} + F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [u_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+1}^{n} - F_{t-1}^{n}) - u_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n} - F_{t-1}^{n})]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n} + F_{t+\frac{1}{2}}^{n}) - u_{t-\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n})$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n}) - u_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n})]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n} - U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n}) - U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}}^{n})]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}^{n}) - U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}^{n})}]$ $= \frac{\Delta t}{2\Delta x} [U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}^{n}) - U_{t+\frac{1}{2}}^{n}(F_{t+\frac{1}{2}^{n}}) - U_{t+\frac{1}{2}}^{n}(F_{t+\frac$		228	-
$ \begin{aligned} & \mathcal{K} = \sum_{i=1}^{n} \mathcal{K}_{i} = \mathcal{K}_{i} _{i} = $	A) 加里不满足保形传输抑则,则对该占平田迎风差构式,即.	229	
$ \begin{split} F_{t}^{n+1} &= F_{t}^{n} - \frac{\Delta t}{2\Delta x} [u_{l+\frac{1}{2}}^{n} (F_{t+1}^{n} + F_{t}^{n}) - u_{l+\frac{1}{2}}^{n} (F_{t}^{n} + F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [u _{l+\frac{1}{2}}^{n} (F_{t+1}^{n} - F_{t}^{n}) - u _{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [u _{l+\frac{1}{2}}^{n} (F_{t+1}^{n} - F_{t}^{n}) - u _{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &= Trick april \\ F_{t}^{n+1} &= F_{t}^{n} - \frac{\Delta t}{2\Delta x} [u_{l+\frac{1}{2}}^{n} (F_{t+1}^{n} + F_{t}^{n}) - u_{l+\frac{1}{2}}^{n} (F_{t}^{n} + F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t+1}^{n} - F_{t}^{n}) - [\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t+1}^{n} - F_{t}^{n}) - [\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t+1}^{n} - F_{t}^{n}) - [\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t+1}^{n} - F_{t}^{n}) - [\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{l+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (H_{t+\frac{1}{2}}^{n} h) [\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} h] [\tilde{u}]_{l+\frac{1}{2}}^{n} [\tilde{u}]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} h] [\tilde{u}]_{l+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} h] [\tilde{u}]_{l+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} h] [\tilde{u}]_{l+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} h] [\tilde{u}]_{l+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_{t+1}^{n})] \\ &+ \frac{\Delta t}{2\Delta x} [[\tilde{u}]_{t+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} h] [\tilde{u}]_{l+\frac{1}{2}}^{n} = [u]_{l+\frac{1}{2}}^{n} (F_{t}^{n} - F_$	A7 如未个例定体形得制成则,则对该点未用更凡左伯氏,即:	230	
$\begin{split} F_{i}^{n^{+1}} &= F_{i}^{n} - \frac{\Delta \lambda}{2\Delta x} \left[u_{i+\frac{1}{2}}^{n} (F_{i}^{n} + F_{i}^{n}) - u_{i+\frac{1}{2}}^{n} (F_{i}^{n} + F_{i+1}^{n}) \right] & 232 \\ &+ \frac{\Delta t}{2\Delta x} \left[u _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i}^{n}) - u _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \right] & 233 \\ &+ \frac{\Delta t}{2\Delta x} \left[u _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - u _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \right] & 233 \\ &= 236 \\ B) \ Jup, approximation of the state of t$	A1	231	-
$\begin{split} & \sum_{k=1}^{2} \sum_{i=1}^{2} $	$F_i^{n+1} = F_i^n - \frac{\Delta u}{2\Lambda r} \left[u_{i+1}^n (F_{i+1}^n + F_i^n) - u_{i-1}^n (F_i^n + F_{i-1}^n) \right]$	232	
$\begin{aligned} &+ \frac{\Delta t}{2\Delta x} [[u_{l_{1}}^{n} - F_{l}^{n}] - [u_{l_{1}}^{n} - F_{l_{1}}^{n}]] & \begin{array}{l} 224 \\ 235 \\ 236 \\ 236 \\ 236 \\ 237 \\ 238 \\ 238 \\ 239 \\ 239 \\ 239 \\ 239 \\ 239 \\ 239 \\ 239 \\ 240 \\ 241 \\ 241 \\ 242 \\ 241 \\ 242 \\ 243 \\ 243 \\ 243 \\ 243 \\ 243 \\ 244 \\ 245 \\ 244 \\ 245 \\ 244 \\ 245 \\ 244 \\ 245 \\ 246 \\ 247 \\ 248 \\ 249 \\ 248 \\ 249 \\ 248 \\ 249 \\ 249 \\ 248 \\ 249 \\ 249 \\ 248 \\ 249 \\ 249 \\ 248 \\ 249 \\ 249 \\ 241 \\ 242 \\ 243 \\ 243 \\ 249 \\ 241 \\ 243 \\ 243 \\ 244 \\ 245 \\ 246 \\ 247 \\ 248 \\ 249 \\ 249 \\ 249 \\ 249 \\ 249 \\ 249 \\ 241 \\ 243 \\ 249 \\ 241 \\ 243 \\ 243 \\ 249 \\ 244 \\ 245 \\ 246 \\ 247 \\ 248 \\ 249 \\$		233	
$2\Delta x^{-1} + \frac{1}{2} + 10^{-1} + 10^{-1} + \frac{1}{2} + 10^{-1} + \frac{1}{2} + $	$+\frac{\Delta t}{1-t}[u ^n, (F_{i+1}^n - F_i^n) - u ^n, (F_i^n - F_{i+1}^n)]$	234	
B) 如果满足保形传输规则,则利用 F_i^* 对 Lax-Wendroff 格式作校正积分,校 正方法如下: $F_i^{n+1} = F_i^n - \frac{\Delta t}{2\Delta x} [u_{i+\frac{1}{2}}^n (F_{i+1}^n + F_i^n) - u_{i-\frac{1}{2}}^n (F_i^n + F_{i-1}^n)]$ $+ \frac{\Delta t}{2\Delta x} [\ \tilde{u}\ _{i+\frac{1}{2}}^n (F_{i+1}^n - F_i^n) - \ \tilde{u}\ _{i-\frac{1}{2}}^n (F_i^n - F_{i-1}^n)]$ $+ \frac{\Delta t}{2\Delta x} [\ \tilde{u}\ _{i+\frac{1}{2}}^n (F_i^n - F_i^n) - \ \tilde{u}\ _{i-\frac{1}{2}}^n (F_i^n - F_{i-1}^n)]$ 244 $= 245$ 246 247 248 246 247 248 246 247 248 249 24	$2\Delta x$ $\frac{i+\frac{1}{2}}{2}$	235	
B) 如果满足保形传输规则,则利用 F_i 对 Lax-Wendroff 格式作校正积分,校 正方法如下: $F_i^{n+1} = F_i^n - \frac{\Delta t}{2\Delta x} \left[u_{i_{\frac{1}{2}}}^n (F_{i+1}^n + F_i^n) - u_{i_{\frac{1}{2}}}^n (F_i^n + F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_{i+1}^n - F_i^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_{i+1}^n - F_i^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_{i+1}^n - F_i^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $+ \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) \right] $ $= \frac{\Delta t}{2\Delta x} \left[\ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2}}}^n (F_i^n - F_i^n - F_{i-1}^n) - \ \tilde{u} \ _{i_{\frac{1}{2$		230	
$ \begin{split} \label{eq:relation} \mathbb{E} f_{i}^{n+1} &= F_{i}^{n} - \frac{\Delta t}{2\Delta x} \begin{bmatrix} u_{i+\frac{1}{2}}^{n} (F_{i+1}^{n} + F_{i}^{n}) - u_{i+\frac{1}{2}}^{n} (F_{i}^{n} + F_{i+1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i}^{n} - F_{i+1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{243} \end{bmatrix} \\ &+ \frac{\Delta t}{244} \end{bmatrix} \\ &= \frac{\Delta t}{244} \\ &= \frac{\Delta t}{244} \end{bmatrix} \\ &= \frac{\Delta t}{244} \end{bmatrix} \\ &= \frac{\Delta t}{244} \\ &= \Delta$	B) 如果满足保形传输规则,则利用 Fi 对 Lax-Wendroff 格式作校正积分,校	237	
$\begin{split} & E_{i} f_{i} $	正方法如下。	238	_
$\begin{split} F_{i}^{n+1} &= F_{i}^{n} - \frac{\Delta t}{2\Delta x} \begin{bmatrix} u_{i+\frac{1}{2}}^{n} (F_{i+1}^{n} + F_{i}^{n}) - u_{i-\frac{1}{2}}^{n} (F_{i}^{n} + F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i-\frac{1}{2}}^{n} (F_{i}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i-\frac{1}{2}}^{n} (F_{i}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i-\frac{1}{2}}^{n} (F_{i}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i-\frac{1}{2}}^{n} (F_{i}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i-\frac{1}{2}}^{n} (F_{i}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) \end{bmatrix} \\ &+ \frac{\Delta t}{2\Delta x} \begin{bmatrix} H_{i+1}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) - \ \tilde{u}\ _{i+\frac{1}{2}}^{n} (F_{i+1}^{n} - F_{i-1}^{n}) - \ \tilde{u}$	正 仍然知下:	239	
$\begin{split} F_{i}^{nn} &= F_{i}^{n} - \frac{-}{2\Delta x} \left[u_{i+\frac{1}{2}}^{n} \left(F_{i+1}^{n} + F_{i}^{n} \right) - u_{i-\frac{1}{2}}^{n} \left(F_{i-1}^{n} + F_{i-1}^{n} \right) \right] \\ &+ \frac{\Delta}{2\Delta x} \left[\left[\tilde{u} \right]_{i+\frac{1}{2}}^{n} \left(F_{i+1}^{n} - F_{i}^{n} \right) - \left \tilde{u} \right]_{i-\frac{1}{2}}^{n} \left(F_{i}^{n} - F_{i-1}^{n} \right) \right] \\ &+ \frac{\Delta}{2\Delta x} \left[\left[\tilde{u} \right]_{i+\frac{1}{2}}^{n} \left(F_{i+1}^{n} - F_{i}^{n} \right) - \left \tilde{u} \right]_{i-\frac{1}{2}}^{n} \left(F_{i}^{n} - F_{i-1}^{n} \right) \right] \\ &+ \frac{\Delta}{2\Delta x} \left[\left[\tilde{u} \right]_{i+\frac{1}{2}}^{n} \left(F_{i+1}^{n} - F_{i}^{n} \right) - \left \tilde{u} \right]_{i-\frac{1}{2}}^{n} \left(F_{i-1}^{n} - F_{i-1}^{n} \right) \right] \\ &+ \frac{\Delta}{2\Delta x} \left[\left[\tilde{u} \right]_{i+\frac{1}{2}}^{n} \left(F_{i+1}^{n} - F_{i}^{n} \right) - \left \tilde{u} \right]_{i-\frac{1}{2}}^{n} \left(F_{i-1}^{n} - F_{i-1}^{n} \right) \right] \\ &+ \frac{\Delta}{242} \\ &= 243 \\ &= 244 \\ &= $	At a second s	240	
$\begin{split} & \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} $	$F_{i}^{n+1} = F_{i}^{n} - \frac{1}{2\Delta r} \left[u_{i+1}^{n} (F_{i+1}^{n} + F_{i}^{n}) - u_{i-1}^{n} (F_{i}^{n} + F_{i-1}^{n}) \right]$	241	-
$\begin{aligned} &+ \frac{\Delta t}{2\Delta x} [\ \vec{u}\ _{l_{\frac{1}{2}}^{1}}^{n} (F_{l^{1}}^{n} - F_{l}^{n}) - \ \vec{u}\ _{l_{\frac{1}{2}}^{1}}^{n} (F_{l}^{n} - F_{l^{-1}}^{n})] & \qquad $		242	
$2\Delta x^{1/k} _{t\frac{1}{2}}^{1/k} _{t\frac{1}{2}}^{1/k} $	$+ \frac{\Delta t}{2} \left[\left \widetilde{\mu} \right ^n, (E_{i,i}^n - E_i^n) - \left \widetilde{\mu} \right ^n, (E_{i,i}^n - E_i^n) \right]$	243	_
$ \begin{aligned} & \left(\sum_{i=1}^{2} - F_{i}^{n} \max \right) (F_{i}^{*} - F_{i}^{n} \min) \\ & \frac{243}{246} \\ & \frac{247}{248} \\ & \frac{247}{248} \\ & \frac{249}{249} \end{aligned} \right) \\ & \frac{243}{246} \\ & \frac{247}{248} \\ & \frac{249}{249} \end{aligned} \\ & \frac{249}{249} \end{aligned} \\ & \frac{249}{249} \\ &$	$2\Delta x^{(1)} + \frac{1}{r+\frac{1}{2}} + \frac{1}{2} + \frac{1}{r+\frac{1}{2}} + \frac{1}{$	244	_
$ \begin{aligned} & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{max})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_{min} \right) \\ & \left\{ A_{i} = (F_{i}^{*} - F_{l}^{n}_{min})(F_{i}^{*} - F_{l}^{n}_$		245	
$\begin{array}{c} 247\\ 248\\ 249\\ \hline \\ 248\\ \hline \\ 249\\ \hline \\ \\ 593\\ \hline \\ 593\\ \hline \\ 593\\ \hline \\ 593\\ \hline \\ 595\\ \hline \\ 596\\ \hline \\ 597\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\mathbf{A}_i = (F_i^* - F_i^n)(F_i^* - F_i^n)$	240	
	t t t max t t min	247	
$ \mathcal{B}_{i+l} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$	在满足保形规则(即 $A_i < 0$)的情况下, $ \tilde{u} ^n$,和 $ \tilde{u} ^n$,的取值有以下四种情	249	
$ \begin{aligned} & \mathcal{R}: & 594 \\ & {\cong} A_{i+l} > 0, \ A_{i-l} > 0 \ \mathfrak{P}: \ \left \tilde{u} \right _{l+\frac{1}{2}}^{n} = \left u \right _{l+\frac{1}{2}}^{n}, \ \left \tilde{u} \right _{l-\frac{1}{2}}^{n} = \left u \right _{l-\frac{1}{2}}^{n} & 596 \\ & {\cong} 597 \\ & {\cong} A_{i+l} > 0, \ A_{i-l} < 0 \ \mathfrak{P}: \ \left \tilde{u} \right _{l+\frac{1}{2}}^{n} = \left u \right _{l+\frac{1}{2}}^{n}, \ \left \tilde{u} \right _{l-\frac{1}{2}}^{n} = \left u^{2} \right _{l-\frac{1}{2}}^{n} & \frac{\Delta t}{\Delta x} \\ & {\cong} 99 \\ & {\cong} A_{i+l} < 0, \ A_{i-l} > 0 \ \mathfrak{P}:, \ \left \tilde{u} \right _{l+\frac{1}{2}}^{n} = \left u^{2} \right _{l+\frac{1}{2}}^{n} & \frac{\Delta t}{A_{l-\frac{1}{2}}} = \left u^{2} \right _{l+\frac{1}{2}}^{n} & \frac{\Delta t}{A_{l-\frac{1}{2}}} \\ & {\cong} 4_{i+l} < 0, \ A_{i-l} < 0 \ \mathfrak{P}:, \ \left \tilde{u} \right _{l+\frac{1}{2}}^{n} = \left u^{2} \right _{l+\frac{1}{2}}^{n} & \frac{\Delta t}{\Delta x}, \ \left \tilde{u} \right _{l-\frac{1}{2}}^{n} = \left u^{2} \right _{l-\frac{1}{2}}^{n} & \frac{\Delta t}{\Delta x} \\ & {\otimes} 00 \\ & {$	$l_{1} = l_{2} + l_{1} + l_{2} + l_{1} + l_{2} + l_{2} + l_{1} + l_{2} + l_{2$	593	
$ \begin{split} \stackrel{\text{i}}{\cong} A_{i+i} > 0, \ A_{i-i} > 0 \ \text{P}^{\frac{1}{2}} : \ \left \tilde{u} \right _{i+\frac{1}{2}}^{n} = \left u \right _{i-\frac{1}{2}}^{n} = \left u \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\cong} S > 5 \\ \stackrel{\text{i}}{\cong} A_{i+i} > 0, \ A_{i-i} < 0 \ \text{P}^{\frac{1}{2}} : \ \left \tilde{u} \right _{i+\frac{1}{2}}^{n} = \left u^{2} \right _{i-\frac{1}{2}}^{n} = \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\cong} \left u^{2} \right _{i-\frac{1}{2}}^{n} = \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\cong} \left u^{2} \right _{i+\frac{1}{2}}^{n} = \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\cong} \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{=} \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\cong} \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\cong} \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\cong} \left u^{2} \right _{i-\frac{1}{2}}^{n} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\boxtimes} \\ \stackrel{\text{i}}{\boxtimes} $	况:	594	
$\begin{split} \stackrel{\text{\tiny $\ }}{=} A_{l+l} > 0, \ A_{i-l} > 0 \ \mathbb{R}^{1} : \ \tilde{u} _{l+\frac{1}{2}}^{n} = u _{l+\frac{1}{2}}^{n}, \ \tilde{u} _{l-\frac{1}{2}}^{n} = u _{l-\frac{1}{2}}^{n} \\ \text{\tiny $\ $		595	
$ \begin{split} & = u^{n} + v^{n} + v^{n} + v^{n} + v^{n} + \frac{1}{2} + v^{n} + \frac{1}{2} + v^{n} + \frac{1}{2} + v^{n} + \frac{1}{2} \\ & = u^{n} _{i+\frac{1}{2}} \\ & = u^{$	当 $A_{i+1} > 0$, $A_{i-1} > 0$ 时; $ \tilde{u} _{1,1}^n = u _{1,1}^n$, $ \tilde{u} _{1,1}^n = u _{1,1}^n$	596	
$\begin{split} \stackrel{\text{\tiny $\ }}{=} A_{i+l} > 0, \ A_{i-l} < 0 \ \mathbb{P}^{\frac{1}{2}} : \ \left\ \tilde{u} \right\ _{l+\frac{1}{2}}^{n} = \left\ u \right\ _{l+\frac{1}{2}}^{n}, \ \left\ \tilde{u} \right\ _{l-\frac{1}{2}}^{n} = \left\ u^{2} \right\ _{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \end{split} $ $\begin{split} \text{\tiny $\ $	$(l+\frac{1}{2})^{-1} (l+\frac{1}{2})^{-1} (l+\frac{1}{2})^{-1} (l-\frac{1}{2})^{-1} (l-\frac$	597	
$ \begin{split} \stackrel{\text{M}}{=} A_{i+l} > 0, \ A_{i-l} < 0 \ \text{PJ} : \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} = \left[u^{l} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta x}{\Delta x} \\ & 599 \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} > 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} = \left[u^{l} \right]_{l-\frac{1}{2}}^{n} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} = \left[u^{l} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} = \left[u^{l} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} = \left[u^{l} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} = \left[u^{l} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} = \left[u^{l} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \left[\tilde{u} \right]_{l-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} :, \ \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} : \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \text{PJ} : \left[\tilde{u} \right]_{l+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} \\ \stackrel{\text{M}}{=} A_{i+\frac{1}{2}^{n} \frac{\Delta t}{\Delta x} \\ $	at a set of the set of	598	
$ \begin{split} & \stackrel{1}{\cong} A_{i+l} < 0, \ A_{i-l} > 0 \ \mathbb{B}^{\dagger} :, \ \left \tilde{u} \right _{i+\frac{1}{2}}^{n} = \left u^{2} \right _{i+\frac{1}{2}\frac{\Delta t}{\Delta x}}^{n}, \ \left \tilde{u} \right _{i-\frac{1}{2}}^{n} = \left u \right _{i-\frac{1}{2}}^{n} \\ & \stackrel{1}{\cong} A_{i+l} < 0, \ A_{i-l} < 0 \ \mathbb{B}^{\dagger} :, \ \left \tilde{u} \right _{i+\frac{1}{2}}^{n} = \left u^{2} \right _{i+\frac{1}{2}\frac{\Delta t}{\Delta x}}^{n}, \ \left \tilde{u} \right _{i-\frac{1}{2}}^{n} = \left u^{2} \right _{i-\frac{1}{2}\frac{\Delta t}{\Delta x}}^{n} \\ & \stackrel{600}{601} \\ & 602 \\ & 603 \\ & 604 \\ & 605 \\ & 606 \\ & 607 \\ & 608 \\ & 609 \\ & 610 \\ & 611 \\ & 612 \\ & 613 \\ \end{split} $	当 $A_{i+l} > 0$, $A_{i-l} < 0$ 时: $ \tilde{u} _{i+\frac{1}{2}}^{n} = u _{i+\frac{1}{2}}^{n}$, $ \tilde{u} _{i-\frac{1}{2}}^{n} = u^2 _{i-\frac{1}{2}\Delta x}^{n}$	599	
$ \stackrel{\text{\tiny $\underline{\texttt{H}}$}}{=} A_{i+l} < 0, \ A_{i-l} > 0 \ \mathbb{B}^{1}:, \ \tilde{u} _{i+\frac{1}{2}}^{n} = u^{2} _{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \tilde{u} _{i-\frac{1}{2}}^{n} = u _{i-\frac{1}{2}}^{n} $ $ \stackrel{\text{\tiny $\underline{\texttt{H}}$}}{=} A_{i+l} < 0, \ A_{i-l} < 0 \ \mathbb{B}^{1}:, \ \tilde{u} _{i+\frac{1}{2}}^{n} = u^{2} _{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \tilde{u} _{i-\frac{1}{2}}^{n} = u^{2} _{i-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} $ $ \stackrel{\text{\tiny 601}}{=} 0 $		600	
$ \stackrel{\text{def}}{=} A_{i+i} < 0, \ A_{i-i} < 0 \ \mathbb{R}^{1}:, \ \tilde{u} _{i+\frac{1}{2}}^{n} = u^{2} _{i+\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x}, \ \tilde{u} _{i-\frac{1}{2}}^{n} = u^{2} _{i-\frac{1}{2}}^{n} \frac{\Delta t}{\Delta x} $ $ \begin{array}{c} 602\\ 603\\ 604\\ 605\\ 606\\ 607\\ 608\\ 609\\ 610\\ 611\\ 612\\ 613 \end{array} $	当 $A_{i+1} \leq 0$, $A_{i+1} \geq 0$ 时: $\ \tilde{u}\ _{i+1}^n = \ u^2\ _{i+1}^n \frac{\Delta t}{\Delta t}$, $\ \tilde{u}\ _{i+1}^n = \ u\ _{i+1}^n$	601	
$\stackrel{\text{\tiny $\underline{\texttt{H}}$}}{=} A_{i+i} < 0, \ A_{i-i} < 0 \ \mathbb{R}^{1}:, \ \tilde{u} _{i+\frac{1}{2}}^{n} = u^{2} _{i+\frac{1}{2}\frac{\Delta t}{\Delta x}}^{n}, \ \tilde{u} _{i-\frac{1}{2}}^{n} = u^{2} _{i-\frac{1}{2}\frac{\Delta t}{\Delta x}}^{n} $ $ \begin{array}{c} 603\\ 604\\ 605\\ 606\\ 607\\ 608\\ 609\\ 610\\ 611\\ 612\\ 613 \end{array} $	$(l+\frac{1}{2}) + (l+\frac{1}{2}) + $	602	
$\exists A_{i+l} < 0, \ A_{i-l} < 0 \ \text{if} \ y :, \ \ u\ _{l+\frac{1}{2}}^{-1} = \ u^{-}\ _{l+\frac{1}{2}\frac{1}{\Delta x}}, \ \ u\ _{l-\frac{1}{2}}^{-\frac{1}{2}} = \ u^{-}\ _{l-\frac{1}{2}\frac{1}{\Delta x}} $ $ \begin{array}{c} 604 \\ 605 \\ 606 \\ 607 \\ 608 \\ 609 \\ 610 \\ 611 \\ 612 \\ 613 \end{array} $	Δt = 0 = t = $(\alpha - 1)^{2} (n - 1)^{2} $	603	
605 606 607 608 609 610 611 612 613	$\equiv A_{i+l} < 0, \ A_{i-l} < 0 \text{ ps}; \ u _{i+\frac{1}{2}} = u^{-} _{i+\frac{1}{2}} \Delta x, \ u _{i-\frac{1}{2}} = u^{-} _{i-\frac{1}{2}} \Delta x$	604	
606 607 608 609 610 611 612 613	· ·	605	
607 608 609 610 611 612 613		606	
608 609 610 611 612 613		607	
609 ↔ 610 611 612 613		608	
610 611 612 613		609	-
611 612 613		610	
612 613		611	
613		612	
		613	

224	-	do k = 1, km
225	-	do j = 1, jmt
226	_	do i = 2, imt-1
227		if(adv_tracer(1:8) == 'centered' .or. &
228	_	adv_tracer(1:5) == 'tspas') then
229		$v_sface(i,j,k) = (vvv(i, j,k) + \&$
230		<pre>vvv(i+1,j,k))*hts(i,j,iblock)*P25</pre>
231	_	<pre>else if(adv_tracer(1:4) == 'flux') then</pre>
232		$v_sface(i,j,k) = (vvv(i, j,k)*dxu(i, j,iblock) + \&$
233		<pre>vvv(i+1,j,k)*dxu(i+1,j,iblock))*P25</pre>
234		end if
235		end do
236		end do
237		
238	_	do j = 2,jmt-1
239	_	do i = 1,imt
240		if(adv_tracer(1:8) == 'centered' .or. &
241	_	adv_tracer(1:5) == 'tspas') then
242		u_wface(i,j,k) = (uuu(i,j-1,k) + &
243		uuu(i,j, k))*htw(i,j,iblock)*P25
244	_	<pre>else if(adv_tracer(1:4) == 'flux') then</pre>
245		u_wface(i,j,k) = (uuu(i,j-1,k)*dyu(i,j-1,iblock) + &
246		uuu(i,j, k)*dyu(i,j,iblock))*P25
247		end if
248		end do
249		end do
593		adv_xx = -(adv_x0 + adv_xy1 + adv_xy2 + adv_c1)
594		$adv_y = -(adv_y + adv_x + adv_x + adv_c + ad$
595		$adv_zz = -(adv_za + adv_zb1 + adv_zb2 + adv_zc)$
596		$adv_tt = adv_xx + adv_yy + adv_zz$
597		
598		ax(:,:,:,mtracer,iblock) = adv_xx(:,:,:)
599		$ay(:,:,:,mtracer,iblock) = adv_yy(:,:,:)$
600		$a_{1}(1) + mtracor (block) = adv (z_{1}(1) + 1)$
		$d_2(.,.,.,m(1,d(e_1,1)))(k) = d(k) + 22(.,.,.)$
601		az(.,.,., mitracer, ibrock) - auv_zz(.,.,.)
601 602		<pre>deallocate(adv c1,adv c2,adv zc)</pre>
601 602 603		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv v0, adv xx, adv vv)</pre>
601 602 603 604		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_x1, adv xv2, adv xv3, adv xv4)</pre>
601 602 603 604 605		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(at00, atmax, atmin)</pre>
601 602 603 604 605 606		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(at00, atmax, atmin) deallocate(adv zz, adv za, adv zb1)</pre>
601 602 603 604 605 606 607		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(at00, atmax, atmin) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz)</pre>
601 602 603 604 605 606 607 608		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(at00, atmax, atmin) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz)</pre>
601 602 603 604 605 606 607 608 609		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(at00, atmax, atmin) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz) else</pre>
601 602 603 604 605 606 607 608 609 610		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz) else call EXIT LICOM(sigAbort.'The false advection option for tracer')</pre>
601 602 603 604 605 606 607 608 609 610 611		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz) else call EXIT_LICOM(sigAbort,'The false advection option for tracer') end if _! if(adv_tracer(1:8) == 'centered') then</pre>
601 602 603 604 605 606 607 608 609 610 611 612		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz) else call EXIT_LICOM(sigAbort,'The false advection option for tracer') end if ! if(adv_tracer(1:8) == 'centered') then</pre>
601 602 603 604 605 606 607 608 609 610 611 612 613		<pre>deallocate(adv_c1,adv_c2,adv_zc) deallocate(adv_x0, adv_y0, adv_xx, adv_yy) deallocate(adv_xy1, adv_xy2, adv_xy3, adv_xy4) deallocate(adv_zz, adv_za, adv_zb1) deallocate(adv_zb2, atmaxz, atminz, atz) else call EXIT_LICOM(sigAbort,'The false advection option for tracer') end if ! if(adv_tracer(1:8) == 'centered') then end subroutine ADVECTION TRACER</pre>

密度计算模块

模式中位密度计算采用的是一个三次多项式拟合的 UNESCO (United Nations Educational, Scientific and Cultural Organization)公式,扣除所在深度的参考层结,只计算密度 对参考位温和参考盐度的扰动量(Bryan和Cox, 1972; UNESCO, 1981)。计算公式为:

$$\begin{split} &\delta\rho = c_1 \delta T + c_2 \delta S \\ &+ c_3 \delta T^2 + c_4 \delta T \delta S + c_5 \delta S^2 \\ &+ c_6 \delta T^3 + c_7 \delta T \delta S^2 + c_8 \delta T^2 \delta S + c_9 \delta S^3 \\ &\delta\rho \equiv \rho - \rho_r, \ \delta T \equiv T - T_r, \ \delta S \equiv S - S_r \\ &T \text{ 和S 分别表示 参考密度 } \text{ 参考位温和参考学度 } on T \end{array}$$

ρ_r, T_r和S_r分别表示参考密度、参考位温和参考盐度。ρ、T和 S的单位分别为kg m⁻³、℃和(psu-35)/1000。特别需要说明 的是,方程中S定义为(Sp-35)/1000。九个系数考虑了压 力对密度的影响,故而是随深度而变化的。

62	_	subroutine DENSITY
63		
64		
65		LOCAL VARIABLES
66		integer : iblock
67		
68		
60		
70		1 Start of code body
70		start of code body
72		:
72		
73	_	de iblock - 1 plocks clipic
74		do Iblock = 1, nblocks_clinic
75		
/6	_	do j = jst,jet
//	-	do $1 = 1$, int
78	-	1f(vit(1, j, k, iblock) > 0.0) then
79		tq = atb(i, j, k, 1, iblock) - to(k)
80		sq = atb(i,j,k,2,iblock) - so(k)
81		
82		
83		pdensity(i,j,k,iblock) = 1.0d+3 + po(k)+ (c(k,1) + &
84		(c(k,4) + c(k,7)*sq)*sq + &
85		(c(k,3) + c(k,8)*sq+c(k,6)*tq)* &
86		tq)*tq + (c(k,2) + (c(k,5) + &
87		c(k,9)*sq)*sq
88	_	else
89		pdensity(i,j,k,iblock) = 0.0
90		end IF
91		end do
92		end do
93		end do
93 94		end do end do
93 94 95		end do end do
93 94 95 96		end do end do
93 94 95 96 97		end do end do return
93 94 95 96 97 98		end do end do return end subroutine DENSITY
93 94 95 96 97 98		end do end do return end subroutine DENSITY function DENS(tg.sg.kk)
93 94 95 96 97 98 34 35		end do end do return end subroutine DENSITY function DENS(tq,sq,kk)
93 94 95 96 97 98 34 35 35		end do end do return end subroutine DENSITY function DENS(tq,sq,kk)
93 94 95 96 97 98 34 35 36	-	end do end do return end subroutine DENSITY function DENS(tq,sq,kk)
93 94 95 96 97 98 34 35 36 37		end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS:
93 94 95 96 97 98 34 35 36 37 38		<pre>end do end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq</pre>
92 94 95 96 97 98 34 35 36 37 38 39	-	<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40	-	<pre>end do end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41	-	<pre>end do end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42	-	<pre>end do end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 42		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: does ! does</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens !</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47	C003	<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens !</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	8	<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens ! ! Start of code body !</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens ! </pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens ! </pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	-	<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens ! Start of code body ! </pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens !</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	8	<pre>end do end do return end subroutine DENSITY Tunction DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens !</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 42 43 44 45 46 47 48 49 50 51 52 53		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk)</pre>
93 94 95 96 97 98 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54		<pre>end do end do return end subroutine DENSITY function DENS(tq,sq,kk) ! INPUT PARAMETERS: real(r8),intent(in) :: tq !< @param tq real(r8),intent(in) :: sq !< @param sq integer, intent(in) :: kk !< @param kk ! LOCAL PARAMETER real(r8) :: dens ! dens ! dens = (c(kk,1) + (c(kk,4) + c(kk,7)*sq)*sq + & (c(kk,3) + c(kk,8)*sq + c(kk,6)*tq)*tq)*tq + & (c(kk,2) + (c(kk,5) + c(kk,9)*sq)*sq return</pre>

参数化子系统负责处理海洋和海冰中的物理过程,主要分两类:一类是使用简单的近似方程表述复杂的海洋物理过程、海冰特征状态和复杂物理过程,如太阳短波辐射穿透过程,融池分布、海冰的强度、含盐胞的海冰比热、冰气-冰海间的扰动通量和应力、短波辐射反照和传输过程;另一类是次网格过程,即模式网格无法分辨的过程,主要包括海表湍流通量、水平粘性、对流调整方案、沿等密度面(或中性面)的混合以及穿越等密度面的混合等。

 $+C_{T}$

射在海洋中的分布廓线。

短波穿透影响: 上层海洋层结; 混合过程; 海表温度,进而影响海气通 量交换以及海洋和大气环流。

海洋的典型吸收系数 (取自Thomas et al., 1999)

Jerlov(1968)方案

使用双 e 指数表示短波辐射随深度的变化,公式如下:

$$I_0 = S_{w0} \left[A_1 e^{\frac{-z}{B_1}} + A_2 e^{\frac{-z}{B_2}} \right]$$

短波辐射穿透模块

卫星观测的海洋浮游植物和陆面植被 Ohlmann (2003) 方案

在开洋面上,海水对短波辐射的吸收在很大程度上受浮游植物的影响。因此, 近期发展了依赖于浮游植物含量的方案,这里的浮游植物含量用海水中叶绿素含 量表示。方案仍采用双指数形式,但是吸收的比例系数和穿透的深度都是叶绿素 的函数,公式如下:

$$I_{0} = S_{w0} \left[A_{1}(chl) e^{\frac{-z}{B_{1}(chl)}} + A_{2}(chl) e^{\frac{-z}{B_{2}(chl)}} \right]$$

对于叶绿素含量大的海域,穿透系数 B 更小,红外吸收系数 A₁越大,短波 吸收系数 A₂越小。

_		
ſ	10	subroutine SW ABSOR
	11	_
	12	
	13	<pre>#include <def-undef.h></def-undef.h></pre>
	14	
	15	use precision_mod
	16	use param_mod
	17	use pmix mod
	18	use pconst_mod
	19	use constant_mod, only: ODOCP
	20	use sw mod
	21	use forc_mod
	22	use domain
	23	
	24	implicit none
	25	integer :: iblock
	26	
	27	1
	28	! Start of code body
	29	· · · · · · · · · · · · · · · · · · ·
	30	
	31	<pre>#if (defined SOLARCHLORO)</pre>
	32	!
	33	! chl for table look-up
	34	!
	35	chloc=(/ 0.001D0,0.005D0, 0.01D0, 0.02D0,&
	36	.03D0, .05D0, .10D0, .15D0, &
	37	.20D0, .25D0, .30D0, .35D0, &

对流调整模块

表面冷却 海冰盐析

$$\frac{\partial T}{\partial t} = -(u + u^*) \frac{\partial T}{\partial x} - (v + v^*) \frac{\partial T}{\partial y} - (w + w^*) \frac{\partial T}{\partial z} + K_h \Delta T + \frac{\partial}{\partial z} (K_v \frac{\partial T}{\partial z}) + R(K_I, T) + \frac{1}{\rho C_p} \frac{\partial I_0}{\partial z} + C_T 表示深对流, 没有具体的表达式$$

1

 T_0

T

$$T = \frac{T_0 h_0 + T_1 h_1}{h_0 + h_1}$$

对流调整模块

具体步骤如下:

- (1) 顺序计算水柱中每一个网格元的位密度,相邻 的网格采用相同的压力参考面;
- (2) 比较所有的位密度对,查找不稳定;
- (3) 混合最上面的不稳定对;
- (4) 检查下面的一层,如果这一层的位密度比混合 后的位密度小,就把这三层混合起来,并继续按照 这种方法处理更多的层,直到达到稳定;

(5) 检查混合部分之上的一层,看是否有不稳定出现。如果有不稳定出现,重复步骤(3);如果没有,继续查找混合部分之下的各层,若找到不稳定部分,则重复步骤(3)。

```
if ( adv tracer(1:8) == 'centered' ) then
246
              if(ist >= 1)then
247
248
                 c2dtts = dts*2.0d0
249
              else
                 c2dtts = dts
              end if
           else if( adv tracer(1:5) == 'tspas') then
              c2dtts = dts
254
           else
              if(mytid == 0) write(16,*)'error in convadj'
256
           end if
          do n = 1, ntra
              do k = 1, km
                 ! for output dt diffusion
                 dt conv(:,:,k,n,:) =(at(:,:,k,n,:) - atb(:,:,k,n,:))/ &
                                       c2dtts*vit(:,:,k,:)
264
              enddo
           enddo
           tend = tend + dt conv  ! total tendency
           if(trim(adv tracer) == 'tspas') then
              atb(:,:,\overline{1}:km,:,:) = at(:,1:km,:,:)
           end if
           return
274
      end subroutine CONVADJ
```


中尺度涡参数化模块

中尺度涡参数化模块

以温度方程为例, GM90 方案在温度(以及盐度和其他示踪物)方程的平流 项中引入了涡旋诱发的输送分量表达式如下:

$$\frac{\partial T}{\partial t} + \left(v \underbrace{v^*}_{a\partial\theta} + \left(u \underbrace{u^*}_{a\sin\theta\partial\lambda} + \left(w \underbrace{w^*}_{\partial z} \underbrace{\partial T}_{\partial z} + \left(w \underbrace{w^*}_{\partial z} \underbrace{w^*}_{\partial z} + w \underbrace{w^*}_{\partial z} + \left(w \underbrace{w^*}_{\partial z} \underbrace{w^*}_{\partial z} + w \underbrace{w^*}_{\partial z} + w \underbrace{w^*}_{\partial z} \right)\right)\right)\right)\right)$$

u^{*}和*v*^{*}为涡旋诱发的输送速度,*A*_{ITH}为沿等密度面的厚度扩散系数,*S*₀和*S*_λ 为两个方向的等密度面的坡度。

调整后的水平混合系数具体计算公式如下:

R82方案

$$K^{z} = \frac{A_{H}}{(1+\delta^{2})}$$

$$\times \begin{bmatrix} 1 + \frac{\rho_{y}^{2} + \varepsilon \rho_{x}^{2}}{\rho_{z}^{2}} & (\varepsilon - 1) \frac{\rho_{x} \rho_{y}}{\rho_{z}^{2}} & (\varepsilon - 1) \frac{\rho_{x}}{\rho_{z}} \end{bmatrix}$$

$$\times \begin{bmatrix} (\varepsilon - 1) \frac{\rho_{x} \rho_{y}}{\rho_{z}^{2}} & 1 + \frac{\rho_{x}^{2} + \varepsilon \rho_{y}^{2}}{\rho_{z}^{2}} & (\varepsilon - 1) \frac{\rho_{y}}{\rho_{z}} \end{bmatrix}$$

$$(\varepsilon - 1) \frac{\rho_{x}}{\rho_{z}} & (\varepsilon - 1) \frac{\rho_{y}}{\rho_{z}} & \varepsilon + \delta^{2} \end{bmatrix}$$

.07	!
.08	! evaluate K2(,,3) centered on the northern face of "T" cells
.09	!
.10	call K2 3
.11	_
.12	!
.13	! evaluate K1(,,3) centered on eastern face of "T" cells
.14	!
.15	call K1_3
.16	
.17	!
.18	! evaluate K3(,,13) centered on bottom face of "T" cells
.19	!
.20	call K3_123
.21	
.22	!
.23	! compute isopycnal advective velocities for tracers
.24	!
.25	deallocate(e,rhoi)
26	<pre>allocate(adv_vetiso(imt,km,jmt,max_blocks_clinic))</pre>
.27	
.28	call ISOADV
.29	
.30	return
.31	end subroutine ISOPYC

Canuto湍流混合模块

扩散系数 $K_{\rho}(r,N,R_i,\varepsilon)$ 取决于密度比 r、Brunt-Väisälä 频率 N、Richardson 数 R_i 和动能耗散率 ε ,下标 $\rho=(m,h,s)$ 分别表示动量、热量和盐度。密度比的表达式为:

 $r = \alpha \partial_z \overline{\theta} / (\beta \partial_z \overline{S})$

密度比和 Brunt-Väisälä 频率由海洋环流模式的大尺度场计算得到。剪切作 用由 Richardson 数表征,并根据观测来调整临界 Richardson 数(~1),混合层内 主要为风驱动的大尺度剪切,混合层之下则是小尺度剪切如内波为主。耗散率表 示混合相关的物理过程,混合层内主要为风搅拌作用,在混合层下的开洋面上考 虑内波破碎等,地形附近则考虑潮耗散或地热加热作用。该方案适用于双扩散稳 定、双扩散不稳定、盐指和对流扩散情况:

双扩散稳定: $(\partial_z T > 0, \partial_z S < 0, r_\rho < 0, Ri_T > 0)$

双扩散不稳定: ($\partial_z T < 0$, $\partial_z S > 0$, $r_\rho > 0$, $Ri_\tau < 0$)

盐指: ($\partial_z T > 0$, $\partial_z S > 0$, $r_\rho > 0$, $Ri_T > 0$)

扩散对流: ($\partial_z T < 0$, $\partial_z S < 0$, $r_\rho > 0$, $Ri_T > 0$)

该方案首先计算压力网格点上的粘性、扩散系数,然后使用隐式方案求解垂 直扩散方程,并将粘性廓线水平插值到速度网格点,最后求解动量垂直粘性方程。

492	subroutine canuto 2010 interface(Km out,	Kh out,	Ks out,	Kd out,	mld out,&
493	ts in,	ss in,	rho in,	ri in,	rrho in,&
494	n2 in,	s2 in,	lat in,	lev in,	num lev,ii
495					
496	real(r8), parameter :: Rrho bound = 1.	d-3			
497	real(r8), parameter :: Ri low = -1.6	1+10			
498	real(r8) parameter : Ri high = 1 c	1+10			
199	integer intent(in) :: num low ii ii	iblock isc			
500	roal(r8) intent(in) :: low in(km) s	in(km-1) n	2 in (km - 1)	lat in	
501	real(r_0), intent(in) : is in(km), so	$\frac{1}{2}$ in (km) rho	in(km) ri	$\frac{1}{2}$	h_{0} in $(km-1)$
501	real (10), intent (11) 100 100 100	$_{\rm LII}(\rm Kill), \rm LIIO_{\rm Kill}$	$11(Km), 11_{-}$	$(d_{out} + (l_{m}))$	
502	real(ro), intenc(out) :: Km_out(Km), r	MI_OUC(KIII), K	s_out(kiii), i	ια_ουι (κ), I	lliid_out
505	real(rs) :: struct_m, struct_n, struct_s	s, struct_rno			
504	real(r8) :: struct_m_ini, struct_n_ini,	struct_s_ini	, struct_rno	_ini	
505	<pre>real(r8) :: mix_eff_m, mix_eff_h, mix_</pre>	_eff_s, mix_e	tt_rno		
506	real(r8) :: Rf, Rf_inf, R, Rnew, R_inf	t, Rnew_int,	IKE_mid		
507	real(r8) :: Ri(km-1), Rrho(km-1), Gm(}	cm-1), out_pi	(5), GmO		
508	real(r8) :: cube(4)				
509	integer :: mld_lev, k				
510					
511	call find mix layer depth(mld out,mld	lev, rho in, 0	.03,lev in,	num lev)	
512			_	_	
513					
514	Ri(:) = Ri in(:)				
515	Rrho(:) = Rrho in(:)				
516					
517	where $(Pi in > Pi high)$				
510	where $(RI_III > RI_IIIgII)$ Pi = Pi high				
510	RI – RI_HIGH				
519	elsewhere (RI_III < RI_IOW)				
533	do $k = 1$, num_lev - 1				
534	<pre>call prepare_pi(1.0d10,Rrho(k),out_pi(:))</pre>				
535	call dyn_time_scale_calc(1.0d10, Rrho(k), c	out_pi(:),Gm(k)	,cube,ii,jj)		
536	call struct_function(1.0d10, Rrho(k), out_p	o1(:),Gm(k),str	uct_m_inf,str	uct h inf, stru	ict_s_inf,&
537	coll Df colc(Df inf 1 0d10 Drbc(k) struct	Str	uct_rno_ini,R	_ini, knew_ini;	
539	call prepare pi(Ri(k) Rrho(k) out pi(·))	_II_IIII, SUIUCU_	"_IIII, KIIew_III	1)	
540	call dyn time scale calc(Ri(k) Rrho(k) ou	it ni(·) Gm(k)	cube ii ii)		
541	call struct function (Ri(k), Rrho(k), out pi	(:),Gm(k),stru	ct m.struct h	.struct s.stru	ict rho.R.Rnew)
542	call mixing efficiency(mix eff m, struct m	n,Ri(k),Gm(k))		,	
543	call mixing efficiency (mix eff h, struct h	n,Ri(k),Gm(k))			
544	call mixing_efficiency(mix_eff_s,struct_s	s,Ri(k),Gm(k))			
545	<pre>call mixing_efficiency(mix_eff_rho,struct</pre>	_rho,Ri(k),Gm(k))		
546	<pre>call Rf_calc(Rf,Ri(k),Rrho(k),struct_h,st</pre>	ruct_m,Rnew)			
547					
548	if (k <= mld_lev) then				
549	Call mixed layer TKE calc(TKE mid, mid	1_OUT,Gm(K),S2_	in(K),lev_in(K), KI, KI_INI)	
551	$\operatorname{Km}_{\operatorname{Out}}(k) = \operatorname{mix}_{\operatorname{OII}} \operatorname{max}_{\operatorname{III}}(k)$	(k) +very_small)			
552	$K_{\rm S} = \min \left\{ e_{\rm S} = \min \left\{ e_{\rm$	(k) +very_small)			
553	Kd out (k) = mix eff rho*TKE mld/(N2 i	n(k)+verv smal	1)		
554	end if	,			
555					
556					
557	<pre>if (k > mld_lev) then</pre>				
558	<pre>call Thermocline_mixing_coeff_calc(Km</pre>	n_out(k), Kh_ou	t(k), Ks_out(k), Kd_out(k),	. &
559	mix	_eff_m,mix_eff	_h,mix_eff_s,	mix_eff_rho,&	
560	N2	ın(k),&			
			Ea	rth L	ab

基于St. Laurent(2002)的理论:

$$k_{v} = k_{0} + \frac{\Gamma \epsilon}{N^{2}} = k_{0} + \frac{\Gamma q \mathbf{E}(\mathbf{x}, \mathbf{y})}{\rho} F(z),$$

背景扩散率 $k_0=0.1\times 10^{-4}m^2s^{-1}$,混合效率 $\Gamma = 0.2$ (Osborn,1980),q:局地耗散效率。 内潮能量通量: E(x,y) = $1/2\rho_0 N_b \kappa h^2 \langle U^2 \rangle$,

 N_b :沿海床的浮力频率, $\kappa \pi h$:地形粗糙度的波数和振幅尺度, $\langle U^2 \rangle$:正压潮变化 (方差)。

垂直耗散结构: $F(z) = \frac{e^{-(z+H)/z_s}}{z_s(1-e^{-H/z_s})}$, $z_s=500m$:垂直衰减尺度, H:水柱总深度, F(z)满足 $\int_{-H}^{0} F(z)dz = 1$ 。

330 #if(defi	ned TIDEMIX)
331	ak_tide(i,j,:,iblock)=0.0
332	do k = 1, int (kmt(i, j, iblock)) -1
333	ak_tide(i,j,k,iblock) = &
334	back_tidalmixing + mixing_ef* &
335	local_mixing_fraction*wave_dis(i,j,iblock)* &
336	<pre>fz_tide(i,j,k,iblock)/(dmax1(rict(i,j,k,iblock),&</pre>
337	1.0d-8)*(wp3(k)*1000.0))
338	
339	$ak_{tide}(1, j, k, iblock) = \&$
340	dminl(ak_tide(1,], k, iblock), max_tidalmixing)
341	
342	$\operatorname{richardson}(1,], K, \operatorname{lplock}) = \operatorname{rict}(1,], K, \operatorname{lplock})$
243	$12LIGAT(1, j, k, IDIOCK) = 12_LIGE(1, j, k, IDIOCK)$
344	mp_{j} (r)
"readvc.F90"	670 lines51%
415 #if(def	ined TIDEMIX)
416 i	f(mytid == 0) then
417	iret = NF OPEN('tidal energy nc' nf nowrite ncidl)
418	call CHECK ERR (iret)
419 01	ndif
420	
421 de	o k = 1.1
422	start2(1) = 1; count2(1) = imt global
423	start2(2) = 1; count2(2) = imt global
424	
425	if(mytid == 0) then
426	iret = NF GET VARA DOUBLE(ncid1, 5,start2,count2,buffer)
427	call CHECK ERR(iret)
428	do i = 1, $imt global/2$
429	do i = 1, imt global
430	xx r8 = buffer(i,j)
431	yy r8 = buffer(i, jmt global+1-j)
432	buffer(i,jmt global+1-j) = xx r8
433	buffer(i,j) = $yy r8$
434	end do
435	end do
436	endif
437	
438	call SCATTER GLOBAL(wave dis(:,:,:), buffer, master task, &
439	distrb clinic, field loc center,
440	field type scalar)
441 ei	nd do
"rdriver.F90	" 663 lines62%

Earth Lab

海表边界条件模块

海洋环流主要由三 种"外部"影响所 驱动:

✓ 风

✓加热/冷却

海表边界条件模块

动量方程、位温方程和盐度方程的海表边界条件分别是:

$$-\left\langle w'u'\right\rangle\Big|_{z=z_0} = \frac{1}{\rho_0}\tau_x$$
$$-\left\langle w'v'\right\rangle\Big|_{z=z_0} = \frac{1}{\rho_0}\tau_y$$
$$-\left\langle w'T'\right\rangle\Big|_{z=z_0} = \frac{1}{\rho_0c_p}(Q_{LW} + Q_S + Q_L)$$
$$-\left\langle w'S'\right\rangle\Big|_{z=z_0} = -\frac{S_0}{\rho_0}(P - E + R)$$

以上三式的左端是海洋的垂直湍流通量,右端项分别涉及风应力、热通量和 淡水通量,其中,参数 $\rho_0=1029 \text{ kgm}^{-3}$ 和 cp=3901Jkg⁻¹K⁻¹分别是海水的参考密度 和定压比热。

75	do iblock = 1, nblocks clinic
76	this block = GET BLOCK(blocks clinic(iblock),iblock)
77	do j = this block%je, this block%jb, -1
78	do i = this block%ib, this block%ie
79	tsf(i,j,iblock) = (latl(i,j,iblock) + sen(i,j,iblock) + &
80	<pre>lwup(i,j,iblock) + lwdn(i,j,iblock) + &</pre>
81	netsw(i,j,iblock) + melth(i,j,iblock) - &
82	iceoff(i,j,iblock)*shr const latice – 🌜
83	<pre>snow1(i,j,iblock)*shr const latice)*OD0CP</pre>
84	! net heat flux
85	
86	<pre>swv(i,j,iblock) = netsw(i,j,iblock) ! net solar radiation</pre>
87	nswv(i,j,iblock) = lat1(i,j,iblock) + sen(i,j,iblock) + &
88	lwup(i,j,iblock) + lwdn(i,j,iblock) + 🍇
89	melth(i,j,iblock) - &
90	iceoff(i,j,iblock)*shr_const_latice - 🍇
91	<pre>snow1(i,j,iblock)*shr_const_latice</pre>
92	! net heat <mark>flux</mark> error
93	
94	<pre>ssf(i,j,iblock) = - (prec(i,j,iblock) + evap(i,j,iblock) + &</pre>
95	meltw(i,j,iblock) + roff(i,j,iblock) + &
96	iceoff(i,j,iblock) + &
97	salt(i,j,iblock))*OD0*34.7*1.0D-3/DZP(1)
98	
99	<pre>tmp_su(i,j,iblock) = taux(i,j,iblock)*cos(anglet(i,j,iblock))*&</pre>
100	<pre>tauy(i,j,iblock)*sin(anglet(i,j,iblock))</pre>
101	<pre>tmp_sv(i,j,iblock) = -tauy(i,j,iblock)*cos(anglet(i,j,iblock))+&</pre>
102	<pre>taux(1,j,1block)*sin(anglet(1,j,1block))</pre>
103	end do
104	end do
105	end do
106	
POST	CPL mod add.F90" 202 lines3/%

海底边界条件分为两部分:

✓ 海底地形的抬升作用: $w\Big|_{z=-H} = -(\mathbf{v} \cdot \nabla H)_{z=-H}$

✓ 海底摩擦效应:

 $-\left\langle w'\mathbf{v}'\right\rangle_{z=-H}=\frac{\mathbf{I}}{\rho_{0}}\mathbf{\tau}_{b}$

底摩擦应力 τ_h 由参数化给出:

 $(\tau_{b\theta},\tau_{b\lambda}) = \rho_0 C_0 \sqrt{u_b^2 + v_b^2} (u_b \sin\alpha + v_b \cos\alpha, u_b \cos\alpha - v_b \sin\alpha)$

W

•7

其中, $\tau_{b\theta}$ 和 $\tau_{b\lambda}$ 为海底的摩擦应力; C₀=2.6×10⁻³; 如果余纬 θ >90°时 α =10°, 而 θ <90°时 α =-10°。

初始场

强迫场

"冷"启动: start_type = 'startup' 通常初始速度为0,海 洋温、盐场取自观测, 或者指定的数据;

"热"启动: start_type = 'continue' 初始场取自模式运行 过程中保存的瞬时重 启动场文件。

常用的海洋温、盐气候态观测数据集有: WOA、PHC3.0等;

常用的强迫场数据集有: <u>CORE-I(NYF), CORE-II(IAF), JRA55-do</u>, ERA20C, CRA, GFS等。

3.数据制备

模式输出结果

海洋模式	瞬时重启动场文件		
fort.22.000	川(年)-02(月)-01(日)		
h0	海表面高度		
u	纬向海流		
V	经向海流		
at(1)	海温		
at(2)	盐度		
WS	垂向速度		
su	纬向风应力		
SV	经向风应力		
SWV	短波辐射		
lwv	长波辐射		
sshf	感热		
lthf	潜热		
fresh	虚盐度通量		

海洋模式	代月平均输出结果—	-MMEAN	<u>0001(年)-01(月)</u> .nc
time	时间	akt/aks	湍流扩散系数
lat/lon	经纬度 (T网格)	aktide	潮致扩散系数
ulat/ulon	经纬度 (U网格)	athkdf	厚度扩散系数
lat_aux	纬向辅助网格	su	纬向风应力
lev1/lev	整/半层垂直网格	SV	经向风应力
area	网格面积 (T点)	net1	净的海表热通量
z0	海表面高度	lthf	潜热
ts	海温	sshf	感热
SS	盐度	lwv	长波辐射
us	纬向海流	SWV	短波辐射
VS	经向海流	qice	海冰溶解热
ifrac	海冰密集度	net2	净的盐度通量
ustar	涡致纬向流速	fresh	虚盐度通量
vstar	涡致经向流速	runoff	径流
wstar	涡致垂向流速	psi_euler	欧拉经圈翻转环流
WS	垂向速度	psi_eddy	涡致经圈翻转环流
mld	混合层深度	bsf	正压流函数
ic1	通风层数(包括对流)	mth_adv	经向热输送(欧拉)
ic2	通风层数	mth_adv_is o	经向热输送(中尺度涡)
akm	湍流黏性系数	mth_dif	经向热输送(扩散)

[yuzp@login01 run]\$ ncdump -h MMEAN0001-02.nc netcdf MMEAN0001-02 { dimensions: y = 218; lat aux = 316 ; tracer dim = 2 ; x = 360; basin = 2; lev = 30 : lev1 = 31 ; time = UNLIMITED ; // (1 currently) variables: float lat(y, x) ; lat:long name = "latitude (on T grids)" ; lat:units = "degrees north" ; float lon(y, x) ; lon:long name = "longitude (on T grids)" ; lon:units = "degrees east" ; float ulat(y, x) ; ulat:long name = "latitude (on U grids)" ; ulat:units = "degrees north" ; float ulon(y, x) ; ulon:long name = "longitude (on U grids)" ; ulon:units = "degrees east" ; double lat aux(lat aux) ; float lev(lev) ; lev:long name = "depth (on T grids)" ; lev:units = "meter" ; float lev1(lev1) ; lev1:long_name = "depth (on V grids)" ; lev1:units = "meter" ; double time(time) ; time:long name = "time" ; time:units = "months since 0001-01-01" ; float area(y, x) ; area:long name = "T grid cell area" ; area:units = "m*m"; area: FillValue = 1.e+35f ; area:coordinates = "lon lat" ; float z0(time, y, x) ; z0:long name = "sea surface height" ; z0:units = "meter" ;

Earth Lab

1/10°, 平均7km

海表面温度SST&偏差

Farth Jab

海表平

海表平

海表面高度

